Feature Selection in Kernel Space: A Case Study on Dependency Parsing
نویسندگان
چکیده
Given a set of basic binary features, we propose a new L1 norm SVM based feature selection method that explicitly selects the features in their polynomial or tree kernel spaces. The efficiency comes from the anti-monotone property of the subgradients: the subgradient with respect to a combined feature can be bounded by the subgradient with respect to each of its component features, and a feature can be pruned safely without further consideration if its corresponding subgradient is not steep enough. We conduct experiments on the English dependency parsing task with a third order graph-based parser. Benefiting from the rich features selected in the tree kernel space, our model achieved the best reported unlabeled attachment score of 93.72 without using any additional resource.
منابع مشابه
Feature Engineering in Persian Dependency Parser
Dependency parser is one of the most important fundamental tools in the natural language processing, which extracts structure of sentences and determines the relations between words based on the dependency grammar. The dependency parser is proper for free order languages, such as Persian. In this paper, data-driven dependency parser has been developed with the help of phrase-structure parser fo...
متن کاملEfficient Convolution Kernels for Dependency and Constituent Syntactic Trees
In this paper, we provide a study on the use of tree kernels to encode syntactic parsing information in natural language learning. In particular, we propose a new convolution kernel, namely the Partial Tree (PT) kernel, to fully exploit dependency trees. We also propose an efficient algorithm for its computation which is futhermore sped-up by applying the selection of tree nodes with non-null k...
متن کاملExploring Automatic Feature Selection for Transition-Based Dependency Parsing
In this paper we investigate automatic techniques for finding an optimal feature model in the case of transition-based dependency parsing. We show a comparative study making a distinction between search algorithms, validation and decision rules demonstrating at the same time that using our methods it is possible to come up with quite complex feature specifications which are able to provide bett...
متن کاملAn improved joint model: POS tagging and dependency parsing
Dependency parsing is a way of syntactic parsing and a natural language that automatically analyzes the dependency structure of sentences, and the input for each sentence creates a dependency graph. Part-Of-Speech (POS) tagging is a prerequisite for dependency parsing. Generally, dependency parsers do the POS tagging task along with dependency parsing in a pipeline mode. Unfortunately, in pipel...
متن کاملتأثیر ساختواژهها در تجزیه وابستگی زبان فارسی
Data-driven systems can be adapted to different languages and domains easily. Using this trend in dependency parsing was lead to introduce data-driven approaches. Existence of appreciate corpora that contain sentences and theirs associated dependency trees are the only pre-requirement in data-driven approaches. Despite obtaining high accurate results for dependency parsing task in English langu...
متن کامل